This article was downloaded by: On: 23 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713455674

THEOPHYLLINE ADDUCTS WITH 3d METAL PERCHLORATES

Chester M. Mikulski^a; Matthew K. Kurlan^a; Scott Grossman^a; Monica Bayne^a; Michele Gaul^a; Nicholas M. Karayannis^b

^a Department of Chemistry and Physics, Beaver College, Glenside, PA, U.S.A. ^b Amoco Chemicals Co., Napeville, IL, U.S.A.

To cite this Article Mikulski, Chester M. , Kurlan, Matthew K. , Grossman, Scott , Bayne, Monica , Gaul, Michele and Karayannis, Nicholas M.(1987) 'THEOPHYLLINE ADDUCTS WITH 3d METAL PERCHLORATES', Journal of Coordination Chemistry, 15: 4, 347 - 355

To link to this Article: DOI: 10.1080/00958978708079791 URL: http://dx.doi.org/10.1080/00958978708079791

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

THEOPHYLLINE ADDUCTS WITH 3d METAL PERCHLORATES[†]

CHESTER M. MIKULSKI, MATTHEW K. KURLAN, SCOTT GROSSMAN, MONICA BAYNE, MICHELE GAUL

Department of Chemistry and Physics, Beaver College, Glenside, PA 19038, U.S.A.

and

NICHOLAS M. KARAYANNIS

Amoco Chemicals Co., P.O. Box 400, Naperville, IL 60566, U.S.A. (Received April 26, 1986)

2:] adducts of theophylline (tpH) with 3d metal perchlorates were prepared by refluxing mixtures of ligand and metal salt in ethyl acetate-triethyl orthoformate. The new complexes appear to be generally monomeric. involving terminal N7-bonded tpH ligands. Mn^{2+} , Co^{2+} and Zn^{2+} perchlorates afforded water-free adducts of the types $[M(tpH)_2(OCIO_3)(=O_2CIO_2)]$, (M = Mn, Co) and $[Zn(tpH)_2(OCIO_3)_2]$. The former two complexes are pentacoordinated with one unidentate $-OCIO_3$ and one bidentate chelating $= O_2CIO_2$ ligand, while the Zn^{2+} complex is analogous to the previously reported Cu^{2+} complex, *i.e.* tetrahedral with two unidentate $-OCIO_3$ ligands. The Co^{2+} complex is moisture-sensitive, being converted to the dihydrate $[Co(tpH)_2(OCIO_3)_2(OH_2)_2]$ immediately upon exposure to the atmosphere. The rest of the new complexes were isolated in the form of hydrates and are of the types: $[Ni(tpH)_2(OCIO_3)_2(OH_2)_2]$ hexacoordinated with exclusively coordinated even by $(DCIO_3)_2(OH_2)_2(OCIO_3)_2(OH_2)_2]$. (M = Cr, Fe), hexacoordinated, involving both terminal $-OCIO_3$ ligands and ionic CIO_4^{-r} .

INTRODUCTION

Amongst substituted xanthines, theophylline (tpH; 1,3-dimethylxanthine; I) has been studied to the largest extent as a model of guanine (guH)-metal ion interactions.^{2,3} The weakly acidic proton of neutral tpH is bound to N7 in the solid,^{4,5} while protonation at N9 can occur under relatively acidic conditions.^{6,7} Numerous metal complexes with theophylline have been reported.^{6,8-36} Determination of the formation constants of Cu^{2+} complexes with substituted purines resulted in the following series of decreasing

values: adenine (adH) > purine (puH) > hypoxanthine (hxH) > xanthine (xnH) \ge tpH.³⁵ Crystal structure determinations of several metal complexes with terminal tpH or tp⁻, prepared from neutral or basic solutions, establish the general trend of theophylline preferably binding through the N7 imidazole nitro-gen.^{6,11-13,21,24,25,30,32} Use of the somewhat sterically hindered (owing to the presence of

Downloaded At: 19:20 23 January 2011

[†]Presented in part at the 189th National Meeting, Am. Chem. Soc., see ref. 1.

C.M. MIKULSKI et al.

the methyl substituent at N3) N9 site for binding of theophylline to metal ions occurs⁶ only when the metal complexes are prepared under sufficiently acidic conditions to preclude ionization at N7¹⁴ or when N7 is blocked by prior metal coordination.^{20,34} Two complexes prepared from acidic media were found to involve N9-bonded terminal tpH.^{22,23}, while the presence of N7.N9-bonded bridging tp⁻ was invoked in order to rationalize the formation of a trimeric Pt⁴⁺ complex.²⁰ The presence of strong Hg-N7 (2.08 A) and weaker Hg-N9 (2.91 A) bonds in a Hg²⁺ complex with tp⁻ was recently established.³⁴ Bridging of tp⁻ through N7. N9 was also postulated for [(CH₃Hg)₂tp]NO₃.⁶ whose interaction with excess CH₃HgNO₃, under conditions leading to C2 substitution in *N*-methylimidazole³⁷ and C8 substitution in xanthosine³⁸ and inosine,³⁹ did not result in C8 substitution.⁶ In this respect, theophylline resembles unsubstituted imidazole, which also does not demonstrate carbon-methylmercury bond formation under similar conditions.⁶ Finally, the presence of chelating O6, N7-bonded tp⁻, involving weak Cu-O6 interaction (bond lengths 2.919–3.340 A), was established for a number of Cu²⁺ complexes with this ligand.^{14,15}

As regards the involvement of these laboratories in studies of theophylline metal complexes, the [Cu(tpH)₂(OClO₃)₂] tetrahedral adduct was prepared in early work from ethanol-triethyl orthoformate (teof) and has been characterized.²⁸ Subsequent synthetic work aimed at the isolation of the ophylline complexes with other 3d metal perchlorates $(M^{n+} = Cr^{3+}, Mn^{2+}, Fe^{2+}, Fe^{3+}, Co^{2+}, Ni^{2+}, Zn^{2+})$ from ethanol-teof resulted in failure to produce solid complexes. At that time a new synthetic method involving use of ethyl acetate (ea)-teof as the interaction medium for the syntheses of metal perchlorate complexes with purines was developed.40 This method proved to be significantly better, in that it is much more rapid and leads to substantially higher yields than the procedure involving use of ethanol-teof in the cases of ligands that afford solid metal perchlorate complexes from the latter medium, e.g., xnH.40-43 By employing ea-teof as the interaction medium we were able to isolate solid or semi-solid adducts of tpH with the whole series of 3d metal perchlorates in good yields.¹ and a number of these adducts $(M = Mn^{2+}, Ni^{2+}, Zn^{2+})$ were discussed in a preliminary communication.²⁹ It should be noted that use of ea-teof resulted also in the precipitation of the $[Cu(tpH)_{2}(OClO_{1})_{2}]$ adduct in the form of a crystalline powder in 90% yield,²⁹ while when the same compound was prepared from ethanol-teof, it was initially isolated in the form of a viscous semi-solid, which eventually solidified to a hard glassy green solid upon desiccation.²⁸ The present paper deals with the preparation of metal(III) (Cr, Fe) and metal(II) (Mn, Fe, Co, Ni, Zn) perchlorate adducts with tpH and their characterization by means of spectral, magnetic and conductance studies.

EXPERIMENTAL

The following synthetic method was employed^{1,29}: 1.25 mmol hydrated metal perchlorate is dissolved in a mixture of 35 cm³ ea and 15 cm³ teof, 2.5 (for M²⁺) or 3.75 (for M³⁺) mmol tpH are added, and the resultant mixture is refluxed for 6 h or until no further significant change in appearance is noted. The mixture is then allowed to cool to ambient temperature, 15-20 cm³ anhydrous diethyl ether added and the volume is subsequently reduced at low heat to *ca* 20 cm³. The residue is separated by filtration, washed with 30 cm³ diethyl ether and stored *in vacuo* over anhydrous CaSO₄. The new metal complexes are generally adducts involving 2:1 tpH to metal ion molar ratios, of the following types (analytical results are given in Table I): $M(tpH)_2(ClO_4)_3 \cdot 2H_2O$ (M = Cr. Fe). $M(tpH)_2(ClO_4)_2$ (M = Mn, Co, Zn), Fe(tpH)_2(ClO_4)_2 \cdot H_2O and Ni(tpH)₂(ClO₄)₂ · 2H₂O. The Fe²⁺ and Fe³⁺ complexes were isolated in the form of tacky semi-solids, which would not solidify completely upon desiccation, whilst the rest of the new complexes were obtained as crystalline free-flowing powders. The purple

THEOPHYLLINE COMPLEXES

 TABLE I

 Analytical Data for tpH Adducts with Metal Perchlorates.^a

Complex	Colour	Yield %	С%	H%	N%	M%	Cl%
$Cr(tpH)_2(ClO_4)_3 \cdot 2H_2O$	Khaki	97.6	22.78 (22.52)	2.81 (2.70)	15.06 (15.01)	6.76 (6.96)	14.50 (14.24)
$Mn(tpH)_2(ClO_4)_2$	White	47.2	27.51 (27.38)	2.55 (2.63)	18.48 (18.24)	8.65 (8.95)	11.09 (11.54)
$Fe(tpH)_2(ClO_4)_2 \cdot H_2O$	Brown	59.3	26.82 (26.56)	2.82 (2.87)	18.03 (17.70)	8.97 (8.82)	11.46 (11.20)
$Fe(tpH)_2(ClO_4)_3 \cdot 2H_2O$	Brown	29.6	22.87 (22.40)	2.38 (2.69)	15.30 (14.93)	7.57 (7.82)	14.44 (14.17)
$Co(tpH)_2(ClO_4)_2$	Purple	80.4	27.23 (27.20)	2.52 (2.61)	18.35 (18.13)	9.70 (9.53)	11.39 (11.47)
$Co(tpH)_2(ClO_4)_2 \cdot 2H_2O$	Orange	b	25.46 (25.70)	3.21 (3.08)	17.17 (17.13)	8.82 (9.01)	11.00 (10.84)
$Ni(tpH)_2(ClO_4)_2 \cdot 2H_2O$	Light green	74.6	25.75 (25.71)	3.15 (3.08)	17.44 (17.13)	9.09 (8.98)	10.62 (10.84)
$Zn(tpH)_2(ClO_4)_2$	Cream white	65.8	27.18 (26.92)	2.59 (2.58)	18.23 (17.94)	10.20 (10.47)	11.22 (11.35)

^aFound%, with Calc.% in parentheses. ^bThe hydrated Co²⁺ complex was obtained by exposing the anhydrous analogue to atmospheric moisture (see Experimental Section).

 Co^{2+} complex is extremely moisture-sensitive, being immediately converted to the orange-coloured $Co(tpH)_2(ClO_4)_2 \cdot 2H_2O$ species upon exposure to the atmosphere. The latter product was also studied. The rest of the new complexes do not appear to be as moisture-sensitive as the anhydrous Co^{2+} complex. All the complexes exhibit limited solubility in organic solvents, and especially in various binary solvent mixtures. Their molar conductivities were measured in 10^{-3} M solutions in nitromethane-acetone (1:1 v/v).

The IR spectra of tpH and the new complexes (Table II) were recorded in KBr discs (4000-500 cm⁻¹) and in Nujol mulls between NaCl (4000-500 cm⁻¹) and high density polyethylene (700-200 cm⁻¹) windows, in conjunction with a Perkin-Elmer 621 spectrophotometer. Solid-state (Nujol mull) electronic spectra, magnetic susceptibility (298 K) and conductance measurements (Table III) were obtained by methods described elsewhere.⁴⁴

RESULTS AND DISCUSSION

IR and Conductance Data

Complete or partial IR spectral data for tpH have appeared in several publications.^{6,9,16–19,28,29,33,45} Band assignments in Table II were based on these previous works, as well as complete assignments for xnH^{43,46} and partial assignments for theobromine (tbH; 3,7-dimethylxanthine)^{28,47,48} and caffeine (caf; 1,3,7-trimethylxanthine).^{28,48–50} The spectra of the new metal complexes are quite interesting as far as the differences observed in the fundamental vibrational modes of the perchlorate groups are concerned.^{51,52} In fact, the Cr³⁺, Fe²⁺ and Fe³⁺ complexes exhibit triply split ν_3 and ν_4 (ClO₄) bands, while the strongest and broadest ν_3 (ClO₄) absorption (1100–1090 cm⁻¹) has the characteristic shape of the single band observed in compounds involving exclusively ionic ClO₄⁻; hence, the spectra of these three

PH⁴	$\mathbf{M} = \mathbf{Cr}^{1+}$	$M = Mn^{1+}$	$M = Fe^{rt}$	$M = Fe^{1+}$	$M = Co^{i+b}$	$M = C_0^{2^+ c}$, <i>tiN ⊷</i> M	$M = Zn^{2+1}$	Band assignment
	3410s, h		3380s, h	3440s, b		34105, b	3420s. b		V(aona)
3120s, 3060s	3120s, 3060s	31208, 30555	3130s, 3075s	31208, 30508	31308, 30728	31358, 30808	31258, 30708	3120s, 3070s	
2980s, 2820s	3000s, 2820	29805, 28205	2990s, 2825s	2980s, 2825s	29805, 28255	2990s; 2830s	30005, 28255	2995s, 2830s	
2790ms, 2720	ms, 2780s	2780s, 2715	27905, 2710	2740m, 2710	2795s, 2710m	2795s, 2714m	2785s, 2720m	2795m, 2715m	VLH + VNH
m. 2625ms	2710m, 2630m	ms, 2605ms	ms. 2615ms	m, h. 2615m	2620m b	2615m, b	2610m. b	2630m, h	
1713vs	1710vs	1714vs	1711vs	1707vs	1715vs	1702vs	1705vs	17(Kvs, h	V:0
1668vs, b	1670vs	1672vs, h	1663vs	l665vs	1670vs. h	1681 vs, h	16KOVS, b	It662vs	2,10
1613s, sh.	1637ms, 1615 ms,	1610m, 1579m	1638ms, 1614ms,	1635ms, 1612ms.	1611s, 1580m.	16338, 16208	16305, 16185,	1617m, 1563m	2
1563ms, b	1589m, 1560m,	1560s, 1543m	1593m, 1562m,	1590m, 1560m,	1558s, 1541m	1607s, 1595s	1609s, 1597s	1558m, 1538m	$h_{OH}g + N_{e} J_{A} + J_{e} J_{A}$
	1540ms		1,545m	I 540m		1562m, 1546m	1560m, 1550m	-	
1478m, sh,	1480m, 1460m	1491 ms, 1481s	14K3m, 1461m,	[480m, 1463m	1493s, 14K0s	1495m, 1461m	1490m, 1458m,	1490m, 1460m	
1450vs, 1443vs,	144km, 1420m	1472ms, 1444s	1449m, 1418mw,	1450ms, 1442ms,	1470s, 1445s	1450m, h,	1448m, 1406m	1442ms, 1423m,	
1427s, sh	1409mw, 1365mw	1428ms, 1398w, h,	[350mw,	1420m.	[430ms, [400w, b,	1410m, 1378m	1377m, 1355w,	1408mw, 1388mw,	Ring vibrations +
1372s. 1348m	1352mw, 1330mw	1376w.	1330mw,	[4]0mw,]370mw,	h, 1309mw	1353m, 1313m	1310m, 1304m	1370mw, b,	$\mathbf{v}_{c,\mathbf{n}} + \mathbf{\delta}_{c,\mathbf{n},\mathbf{d}}$
1311m, 1279m	1292mw, 1240mw	1337vw, 1311mw,	1295mw, 1242mw,	L357mw	l284mw. 1240m	1306m, 1278m, b,	1276w, b,	1326w	
1239m, 1218m	1233mw. 1222m	1282mw, 1239m,	1230mw, 1220m,	L312m, 1283m	1225mw, 1190s	1256w, 1240m, b,	1259w, 1242m,	1311w, 1285w	
11768, 1150ш	1200mw, 1170mw	1223 mw. 1187s	1198mw, 1165m	1240m, 1229m, 1187	Ë	1220mw, 1183mw,	b, 1218mw,	1249w, 1220w	
1099m, sh				1150ms		1150ms	118.3mw.	1187w J	
	1139s, 1100s, b.	1128m, 1099m	11.34s, 1097s, h.	1130s, 1090s, h.	1137s, 1102s	1135s, b.	1150ms	-	
	1075s, b	1079m, 1068m	1078s	1070s, sh	1081s, 1069s	1075vs	11305, b,	11065, 10775	v,(CIO,)
		1046m			1047m		1079vs	-	
1038m, 96 0s	1040mw, 970w	976s, 967ms	1040m, 981m	1035mw, 978m	979s, 965ms	1028w, 980w	1030w, 981w,	1030w, 981w)	:
91.3s	900 v	945w	467m, 406w	969m, 911w	947 w	970mw, 911w	969mw, 910w	915vw.sh /	King vibrations
	930w	924m, 916w	931w	925mw	935w, 921w	927w	924w	926w	v.(CIO.)
835ms, 780m	885mw, 860mw	880w, 843m, b	885mw, 861mw	890w, 858w, sh	875w, 844m, b	887w, 869mw	890w, 870mw	888vw, 865vw)	- - - -
752s, 730s.	852w, 780w	780mw, 760m	846mw, 782w	841 mw, 782 w	779mw, 758m	858mw, 840mw	X60mw, 842mw	853vw, 843vw	King vibrations ² +
553w	759mw, 749mw	740s, 720vw	760mw, 741m	769mw, 740m	742s, 720vw	819w, 790w,	820w. 789w	791w 786vw	
	730mw, 680w	660w	684vw. 667vw	680vw, 668vw	665w	771 mw. 742 m	768mw, 739mw	769w, 761w	б _{NH} + б _{СН}
						680mw	679mw	740mw, 678mw	
	628w. 621w	655w, 626w	632m. 624m	629m, 620m	650w, 638w	633ms, 622ms	629ms. 621ms	621 mw. 609 mw	v.(ClO.)
	610mw	619w, 604m	617m	6()8m	629m, 620m				
		S99m			611ms			•	
603m, 555w, b	600w, 575w	560vw, 504ms	600w, 573vw	601mw, 570vw	565vw, 505ms	604w. 568vw	503w, 565vw	599w, 570vw	
50.5m, 490w	509w. 492vw	442m, 419m	510w, 490vw	512w, 489vw	440m, 419m	539vw, 505w	535vw, 504w	408w, 483w	
503m, 490w	509w, 492vw	442m, 419m	510w. 490vw	512w. 489vw	440m, 419m	490vw, 454w	48Xvw, 452w	445w, 420w	v _{toH} (610-200 cm ^{-t}) ^d
146m, 420m	451mw, 419w	393vw, 374m	420w, 378w	445mw, 419mw	397vs, 375mw	422mw, 373vw	420mw, 375vw	380w, 298vw	<u>l</u>
390vw, 378m	370w, 300vw	356w, 300vw	356vw, 300vw	395w, 373w	358w, 300vw	340vw, 299vw	340vw, 300vw	240vw, sh	
305vw, 292vw	240vw, b	290vw	290vw, 237vw	302vw, 241mw	290vw, 237vw	285vw, 241vw	283 vw. 240 vw	-	
	475vw, b	480vw, vb	475vw. b	465vw. b	485w, 473w	470vw. sh	470vw sh	469vw	v.(Cl0.)
	505mw		449mw	504mw		399w	402w		VM_C(aqua)
	335vw, b	321 vw	338vw	329vw, b	330vw	311 vw	313vw	327vw	VM_O(perchlorato)
	275vw, b	261 vw. 241 vw	283vw, 259vw	272vw. b	273vw. 250vw	258vw. 229vw	259vw, 231w	279vw. 252w	¥1. Y

complexes are interpreted in terms of the simultaneous presence of ionic ClO₄⁻ and unidentate coordinated $-OClO_3$ ligands.^{51,52} The Ni²⁺, Zn²⁺ and the hydrated Co²⁺ complexes exhibit doublets in the v_3 and v_4 (ClO₄) regions, and are presumably similar to [Cu(tpH)₂(OClO₃)₂],^{28,29} as far as the exclusive presence of unidentate coordinated $-OClO_3$ is concerned.^{51,52} However, the Mn²⁺ and anhydrous Co²⁺ complexes show quintuply split v_3 and v_4 (ClO₄) bands, which were previously²⁹ attributed to the simultaneous presence of unidentate $-OClO_3$ and bidentate chelating $=O_2ClO_2$ ligands.^{51,52} Actually, the Mn²⁺ and anhydrous Co²⁺ complexes exhibit doublets or complexes, as would be expected for compounds containing coordinated perchlorato ligands.^{51,52} Actually, the Mn²⁺ and an hydrous Co²⁺ complexes exhibit doublets or very broad maxima in the v_1 and v_2 (ClO₄) regions. A single v_{OH} band at 3420-3380 and a single δ_{HOH} absorption at 1638-1630 cm⁻¹ indicate that exclusively coordinated water is present in the new hydrated metal complexes.⁵³

As regards the tpH IR bands, all the new adducts exhibit the $v_{CH} + v_{NH}$ bands of the ligand practically unchanged (3130-2600 cm⁻¹ region), since they comprise neutral tpH. Among these bands, those at 3120 and 2820 cm⁻¹ involve v_{C8-H} contribution,^{28,46-50} whilst the rest (3060, 2980 and bands at 2790-2620 cm⁻¹) are most probably purely v_{NH} absorptions.⁴⁵⁻⁵⁰ The $v_{C=O}$ bands of free tpH are generally insensitive to 3d metal perchlorate adduct formation, so that it can be concluded that the new complexes do not involve tpH binding through one of the C=O oxygens.^{6,9,16-19,28,29,41-43,46,54} Coordination of tpH through a ring nitrogen is suggested by the more significant shifts and splittings of various $v_{C=C}$, $v_{C=N}$ and ring vibrational modes at 1620-1150 cm^{-1,6,9,16-19,28,29,41-43,46,54} Tentative $v_{M-ligand}$ band assignments (Table II), based on previous studies of tetra-, penta- and hexa-coordinated 3d metal complexes with various purines.^{19,28,41,43,55-58} aqua^{19,41,43,55-60} and perchlorato^{28,41,43,56,57,60,61} ligands, are in favour of the following coordination numbers: four for the Fe²⁺ and Zn^{2+,19,28,55,57,60} five for the Mn²⁺ and anydrous Co^{2+,41,55,57,58} and six for the Cr³⁺, Fe³⁺, Ni²⁺ and hydrated Co^{2+,41,43,55-61} complexes. The spectrum of free tpH at 600-200 cm⁻¹ recorded during our study agrees with published data¹⁹; the free ligand bands below 500 cm⁻¹ are mostly due to out-of-plane ring vibrations.⁶²

The molar conductivities of the Cr^{3+} , Fe^{2+} and Fe^{3+} complexes (Table III) are within the range of values corresponding to 1:1 electrolytes,⁶³ and indicate that among the perchlorate groups present in these compounds only one is ionic. The remaining M^{2+} complexes involve exclusively coordinated perchlorate in the solid state, on the basis of the IR evidence (*vide supra*). In nitromethane-acetone solutions they show Λ_M values corresponding practically to non-electrolytes (Mn^{2+} and anhydrous Co^{2+} complexes) or intermediate between non- and 1:1-electrolytes (Zn^{2+} , Ni^{2+} and hydrated Co^{2+} complexes).⁶³ In the latter cases, partial displacement of $-OClO_3$ by solvent (($CH_3)_2C=O$ or CH_3NO_2) ligands presumably occurs in solution, as was also the case with [$Cu(tpH)_2(OClO_3)_2$].²⁸

Electronic Spectra and Magnetic Moments

The magnetic moments of the new paramagnetic metal complexes (Table III) are generally normal for high-spin $3d^3-3d^8$ compounds or the $3d^9$ configuration.⁶⁴ In addition, the μ_{eff} values of the two Co^{2+} perchlorate adducts are consistent with the far-IR evidence, *i.e.*, indicative of coordination number five for the anhydrous (4.52 BM)⁶⁵ and six for the hydrated (4.84 BM)⁶⁴ cobaltous complexes. The UV spectrum of tpH (Nujol mull²⁸ and aqueous solution⁶⁶ spectra previously reported; Table III) generally undergoes shifts of the $\pi \to \pi^*$ transition bands (223, 276 nm) toward lower energies, as well as splittings of the same bands, upon 3d metal perchlorate adduct formation. The $n \to \pi^*$ transition of free tpH is observed at 300 nm in the Nujol mull spectrum^{28,67} and appears at 298-304 nm in the spectra of the new complexes. The new

2011
January
23
19:20
At:
Downloaded

TABLE III	1-state (Nujol mull) Electronic Spectra, Magnetic Susceptibilities (298 K) and Molar Conductivities of tpH Adducts with Metal Perchlorates
	Solic
	v

Complex	λ_{max} , nm ^a	10 [%] Mcor, cgsu	μ _{elt} , μB	AM, A ⁻¹ cm ² mol ^{-1 b}
Cr(tpH) ₂ (ClO ₄) ₃ · 2H ₂ O	204vvs, 225vs, 240vs, sh, 279vs, b, 299s, sh, 355s, sh, 435ms, 460ms, 581m, 602m, 653mw, b	5921	3.77	86
Mn(tpH) ₂ (ClO ₄) ₂	200vvs, 226vs, 214vs, 282vs, b, 298vs, sh, 351s, sh, 420m, b	15008	6.01	12
Fe(tpH) ₂ (ClO ₄), H ₂ O	2000vvs, 227vs, 243vs, 268vs, 279vs, h. 304s, sh. 352s, sh. 560mw, h. 828w, h. 952w, h	10.215	4.96	74
Fe(tpH) ₂ (ClO ₄) ₃ ·2H ₂ O	201vvs, 228vs, 245vs, 280vs, vh, 298vs, sh, 351s, sh, 445s, sh, 540w, sh	15,633	6.13	82
Co(tpH) ₂ (ClO ₄) ₂	202vvs. 227vs. 242vs. sh. 269vs. 286vs. b. 302s. sh. 350s. sh. 463 ms. 522ms. 554ms. 630m. 768m. b. 870w. b. 1000w. b. 1910vw. b	8503	4.52	6
Co(tpH),(ClO,), 2H,O	201vvs. 226vs. 239vs. 245vs. sh. 272vs. 287vs. 300s. sh. 353s. sh. 471ms. 525ms. 551ms. 960mw, b. 1185mw, b	9735	4.84	27
Ni(tpH) ₂ (ClO ₄) ₂ ·2H ₂ O	200vvs, 225vs, 232vs, sh. 246vs, 273vs, 284vs, 301s, sh. 353s, sh.	4111	3.14	31
	431ms, 640m, b, 717m, sh, 993w, b, 1171w, b			
Zn(tpH) ₁ (ClO ₄) ₂	200vvs, 222vs, 241vs, 288vs, vb, 303s, sh, 347s, sh	Diamagnetic		28
^a Nujol mull UV spectru	im of tpH, nm: 223vvs, 276vs, 300vs, sh. Aqueous solution spectrum (pH	6-7): 270 nm (logo	x 4.02). ⁶⁶	

^bConductance measurements were performed at 25C on 10⁻¹M solutions of the complexes in 1.1 (v/v) nitromethane-acetone.

paramagnetic metal complexes exhibit strong metal-to-ligand charge-transfer absorptions, originating in the UV and trailing off into the visible region.⁶⁸ The d-d transition spectra of the Cr³⁺, Ni²⁺ and hydrated Co²⁺ complexes are consistent with low since spectra of the Cr⁻¹, (A^T and hydrated Co⁻² complexes are consistent with low symmetry hexacoordinated configurations,⁶⁹ vis, nm: $M = Cr^{3+} A_{2g}(F) \rightarrow {}^{4}T_{1g}(F) 435, 460;$ ${}^{4}T_{2g}(F) 581, 602, 653 (approximate Dq = 1634 cm^{-1}); Ni^{2+} {}^{3}A_{2g}(F) \rightarrow {}^{3}T_{1g}(P) 431;$ $\rightarrow {}^{3}T_{1g}(F) 640, 717; \rightarrow {}^{3}T_{2g}(F) 993, 1171 (approximate Dq = 923 cm^{-1}); Co^{2+} {}^{4}T_{1g}(F)$ $\rightarrow {}^{4}T_{1g}(P) 471; \rightarrow {}^{4}A_{2g}(F) 525, 551; \rightarrow {}^{4}T_{2g}(F) 960, 1185. The approximate Dq values$ calculated for the Cr³⁺ and Ni²⁺ complexes for pure O_h symmetry are compatible withMN₂O₄ chromophores.^{56,57,70} The d-d spectrum of the anhydrous Co²⁺ complex is characteristic of pentacoordinated compounds of this metal ion (multiple maxima at 463-1910, including bands at 760-870 and 1910 nm).69,71 Finally, the spectrum of the Fc^{2+} adduct, with maxima at 560, 828 and 952 nm, is consistent with distorted tetrahedral symmetry.60,72,73

The overall evidence presented indicates that the new adducts of tpH with 3d metal perchlorates are monomeric species. The inner coordination sphere of the central metal ions is occupied by two terminal unidentate tpH ligands, which are presumably bound by the N7 iidazole nitrogen of this ligand.^{6,11-13,21,24,25,30-32} The coordination is completed by two, three or four oxygen ligands from perchlorato and, in the hydrated species, water molecules, depending on whether the coordination number is four, five or six, respectively. Among M^{2+} perchlorates, only the Zn^{2+} salt produced a tetrahedral adduct analogous to the corresponding Cu²⁺ complex.²⁸ *i.e.*, [Zn(tpH)₂(OClO₃)₂]. The Fe^{2+} complex is also tetrahedral, but involves one water in place of one of the perchlorato ligands and one ionic ClO_4^- group, viz, $[Fe(tpH)_2(OClO_4)(OH_2)]ClO_4$. The Mn²⁺ and anhydrous Co²⁺ complexes contain four ligands, but are pentacoordinated with one of the perchlorato ligands functioning as a chelating bidentate: $[M(tpH)_2(OClO_3)(=O_2ClO_2)]$ (M = Mn, Co). It is somewhat surprising that in the environment of the same four ligands, Co²⁺ in the preceding complex is pentacoordinated, while the corresponding Zn²⁺ complex is tetrahedral; in fact, Co²⁺ and Zn^{2+} tend to produce isomorphous complexes, as, for instance, the tetrahedral 1:1 adducts of their chlorides with 9-methyladenine.74,75 The rest of the new complexes are dihydrates, involving coordination of two of each of the following three ligands: tpH, $-OCIO_3$ and water. The M³⁺ complexes contain also one ionic CIO₄, *i.e.*, $[M(tpH)_2(OClO_3)_2(OH_2)_2]ClO_4$ (M = Cr, Fe), while the M²⁺ complexes are neutral of the $[M(tpH)_2(OClO_3)_2(OH_2)_2]$ (M = Co, Ni) type.

REFERENCES

- C.M. Mikulski, M.K. Kurlan, S. Grossman and N.M. Karayannis, Abstr., 189th Natl. Meetg., Am. 1. Chem. Soc., Miami Beach, Florida, April 28-May 3, 1985; No. INOR 117.
- D.J. Hodgson, Progr. Inorg. Chem., 23, 211 (1977).
- 3. L.G. Marzilli, T.J. Kistenmacher and C.H. Chang, J. Am. Chem. Soc., 95, 7507 (1973).
- D.J. Sutor, Acta Cryst., 11, 83 (1958); E. Shefter, J. Pharm. Sci., 58, 710 (1969).
- S. Nakao, S. Fujii, T. Sakaki and K.I. Tomita, Acta Cryst., **B33**, 1373 (1977); K. Aoki, T. Ichikawa, Y. Koinuma and Y. Iitaka, Acta Cryst., **B34**, 2333 (1978). 5.
- A.R. Norris, R. Kumar, E. Buncel and A.L. Beauchamp, J. Inorg. Biochem., 21, 277 (1984).
- D. Lichtenberg, F. Bergmann and Z. Neiman, J. Chem. Soc., C, 1676 (1971).
- R. Weiss and H. Venner, Hoppe Seyler's Z. Physiol. Chem., 340, 138 (1965); 345, 122 (1966).
- D. Crăciunescu and A. Fruma, Inorg. Chim. Acta., 4, 287 (1970). D. Crăciunescu and I. Mihalcea, Rev. Real Acad. Cienc. Ex. Fis. Nat. Madrid., 64, 1039 (1970). 10
- TJ. Kistenmacher, Acta Cryst., B31, 85 (1975); T.J. Kistenmacher and D.J. Szalda, Acta Cryst., B31, 90 11. (1975).
- 12. T.J. Kistenmacher, D.J. Szalda and L.G. Marzilli, Inorg. Chem., 14, 1686 (1975); D.J. Szalda, T.J. Kistenmacher and L.G. Marzilli, Inorg. Chem., 15, 2783 (1976).
- T. Sorrell, L.G. Marzilli and T.J. Kistenmacher, J. Am. Chem. Soc., 98, 2181 (1976).
- TJ. Kistenmacher, D.J. Szalda, M. Rossi, C.C. Chiang and L.G. Marzilli, Inorg. Chem., 17, 2582 (1978).

C.M. MIKULSKI et al.

- 15. D.J. Szalda, T.J. Kistenmacher and L.G. Marzilli, J. Am. Chem. Soc., 98, 8371 (1976).
 - W. Beck and N. Kottmair, Chem. Ber., 109, 970 (1976).
- 17. M.S. Zitzman, R.R. Krebs and W.J. Birdsall, J. Inorg. Nucl. Chem., 40, 571 (1978); W.J. Birdsall, M.S. Zitzman, J. Inorg. Nucl. Chem., 41, 116 (1979).
- S.D. Rothenberger, M.S. Zitzman and W.J. Birdsall, J. Inorg. Nucl. Chem., 43, 1673 (1981); B.J. Acken, D.A. Cole and W.J. Birdsall, Synth. React. Inorg. Met. Org. Chem., 13, 659 (1983).
- 19. W.J. Birdsall, Inorg. Chim. Acta., 99, 59 (1985).
- 20. N.H. Agnew, T.G. Appleton, J.R. Hall, G.F. Kilmister and I.J. McMahon, Chem. Commun., 324 (1979).
- 21. B.L. Kindberg, E.H. Griffith, E.L. Amma and E.R. Jones, Jr., Cryst. Struct. Commun., 5, 533 (1976).
- 22. E.H. Griffith and E.L. Amma, Chem. Commun., 322 (1979).
- 23. K. Aoki and H. Yamazaki, Chem. Commun., 186 (1980).
- 24. M. Biagini Cingi, A.M. Manotti Lanfredi, I.A. Tiripicchio and M. Tiripicchio Camellini, *Trans. Met. Chem.*, 4, 221 (1979).
- 25. M. Biagini Cingi, A.M. Manotti Lanfredi and A. Tiripicchio, Acta. Cryst., C39, 1523 (1983).
- 26. R.H. Barry, H. Rubin, J.B. Johnson and J.H. Lazarus, J. Pharm. Sci., 70, 204 (1981).
- 27. M. Melnik. Polyhedron., 1, 143 (1982).
- 28. C.M. Mikulski, T.B. Tran, L. Mattucci and N.M. Karayannis, Inorg. Chim. Acta., 78, 269 (1983).
- 29. C.M. Mikulski, M.K. Kurlan, S. Grossman, M. Bayne and N.M. Karayannis, *Inorg. Chim. Acta.*, 108, L7 (1985).
- 30. M.J. Gardner, F.X. Smith and E. Shefter, J. Pharm. Sci., 72, 348 (1983).
- 31. A.R. Norris, S.E. Taylor, E. Buncel, F. Belanger-Gariépy and A.L. Beauchamp, *Inorg. Chim. Acta.*, **92**, 271 (1984).
- 32. A.R. Norris, R. Kumar, E. Buncel and A.L. Beauchamp, Can. J. Chem., 63, 2575 (1985).
- 33. E. Colacio Rodriguez, J.M. Salas Peregrin and M.A. Romero Molina, Rev. Chim. Miner., 21, 123 (1984).
- 34. K. Caldwell, G.B. Deacon, B.M. Gatehouse, S.C. Lee and A.J. Canty, Acta Cryst., C40, 1533 (1984).
- 35. H. Reinert and R. Weiss, Hoppe Seyler's Z. Physiol. Chem., 350, 1310 (1969).
- 36. N.N. Basargin, Dzh.N. Askerov, I.K. Guseinov and Sh.U. Islamov, Zh. Neorg. Khim., 27, 311 (1982);
- P. Umapathy, R.A. Harnesswala and C.S. Dorai, Polyhedron. 4, 1595 (1985).
- 37. A.R. Norris, E. Buncel and S.E. Taylor, J. Inorg. Biochem., 16, 279 (1982).
- 38. E. Buncel, B.K. Hunter, R. Kumar and A.R. Norris, J. Inorg. Biochem., 20, 171 (1984).
- E. Buncel, A.R. Norris, W.J. Racz and S.E. Taylor, *Inorg. Chem.*, 20, 98 (1981); S.E. Taylor, E. Buncel and A.R. Norris, *J. Inorg. Biochem.*, 15, 131 (1981); E. Buncel, A.R. Norris, S.E. Taylor and W.J. Racz, *Can. J. Chem.*, 60, 3033 (1982).
- 40. C.M. Mikulski, M.K. Kurlan, C.J. Lee, M. Bayne, M. Gaul and N.M. Karayannis, *Inorg. Chim. Acta*, 108, L15 (1985).
- 41. C.M. Mikulski, T.B. Tran, L. Mattucci and N.M. Karayannis, Inorg. Chim. Acta, 78, 211 (1983).
- 42. C.M. Mikulski, M.K. Kurlan and N.M. Karayannis, Inorg. Chim. Acta, 106, L25 (1985).
- 43. C.M. Mikulski, M.K. Kurlan, M. Bayne, M. Gaul and N.M. Karayannis, *Inorg. Chim. Acta*, **123**, 27 (1986).
- N.M. Karayannis, L.L. Pytlewski and M.M. Labes, *Inorg. Chim. Acta*, 3, 415 (1969); N.M. Karayannis, C.M. Mikulski, M.J. Strocko, L.E. Pytlewski and M.M. Labes, *Inorg. Chim. Acta*, 8, 91 (1974).
- 45. E.R. Blout and M. Fields, J. Am. Chem. Soc., 72, 479 (1950).
- 46. F. Allaire and A.L. Beauchamp, Can. J. Chem., 62, 2249 (1984).
- 47. D. Cook and Z.R. Regnier, Can. J. Chem., 45, 2899 (1967).
- 48. D. Cook and Z.R. Regnier, Can. J. Chem., 46, 3055 (1968).
- 49. D. Cook and Z.R. Regnier, Can. J. Chem., 45, 2895 (1967).
- 50. S. Goenechea, Mikrochim. Acta. 276 (1972).
- 51. B.J. Hathaway and A.E. Underhill, *J. Chem. Soc.*, 3091 (1961); B.J. Hathaway, D.G. Holah and M. Hudson, J. Chem. Soc., 4586 (1963).
- A.E. Wickenden and R.A. Krause. *Inorg. Chem.*, 4, 404 (1965); S.F. Pavkovic and D.W. Meek, Inorg. Chem., 4, 1091 (1965); M.E. Farago, J.M. James and V.C.G. Trew, *J. Chem. Soc. A.*, 820 (1967).
- 53. I. Nakagawa and T. Shimanouchi, Spectrochim. Acta, 20, 429 (1964).
- 54. S. Shirotake and T. Sakaguchi, Chem. Pharm. Bull., 26, 2941, (1978).
- 55. C.M. Mikulski, L. Mattucci, L. Weiss and N. Karayannis, *Inorg. Chim. Acta*, **107**, 81, 147 (1985); **108**, L35 (1985).
- 56. C.M. Mikulski, L. Mattucci, Y. Smith, T.B. Tran and N.M. Karayannis, *Inorg. Chim. Acta*, 80, 127 (1983).
- A.N. Speca, C.M. Mikulski, F.J. Iaconianni, L.L. Pytlewski and N.M. Karayannis, *Inorg. Chem.*, **19**, 3491 (1980); *Inorg. Chim. Acta*, **46**, 235 (1980); *J. Inorg. Nucl. Chem.*, **43**, 2771 (1981).
- C.M. Mikulski, S. Cocco, N. DeFranco, T. Moore and N.M. Karayannis, *Inorg. Chim. Acta*, 106, 89 (1985).
- A.N. Speca, L.S. Gelfand, L.L. Pytlewski, C. Owens and N.M. Karayannis, *Inorg. Chem.*, 15, 1493 (1976);
 L.S. Gelfand, L.L. Pytlewski, D.L. Cosgrove, C.M. Mikulski, A.N. Speca and N.M. Karayannis, *Inorg. Chim. Acta*, 32, 59 (1979).

16.

THEOPHYLLINE COMPLEXES

- N.M. Karayannis and C.M. Mikulski, *Inorg. Nucl. Chem. Lett.* **17**, 261 (1981).
 J.R. Ferraro and A. Walker, *J. Chem. Phys.*, **42**, 1273, 1278 (1965).
 C.P. Beetz, Jr., and G. Ascarelli, *Spectrochim. Acta*, **A36**, 299 (1980).
- W.J. Geary, Coord. Chem. Rev., 7, 81 (1971). 63.
- B.N. Figgis and J. Lewis, Progr. Inorg. Chem. 6, 37 (1964).
 L. Sacconi, J. Chem. Soc., A, 248 (1970).
 W. Pfleiderer and G. Nübel, Justus Liebigs Ann. Chem., 647, 155 (1961). 64.
- 65.
- 66.
- 67.
- L.B. Clark and I. Tinoco, Jr., J. Am. Chem. Soc., 87, 11 (1965). A.B.P. Lever, J. Lewis and R.S. Nyholm, J. Chem. Soc., 1235 (1962); 3156, 5042 (1963); 1187, 4761 68. (1964)
- 69.
- 70.
- W. Byers, A.B.P. Lever and R.V. Parish, *Inorg. Chem.*, 7, 1835 (1968).
 M.A. Guichelaar and J. Reedijk, *Rec. Trav. Chim. Pays-Bas*, 97, 295 (1978).
 I. Bertini, P. Dapporto, D. Gatteschi and A. Scozzafava, *Inorg. Chem.*, 14, 1639 (1975). 71.
- 72. D.H. Gerlach and R.H. Holm, Inorg. Chem., 8, 2292 (1969).
- 73. C.M. Mikulski, R. Minutella, N. DeFranco, G. Borges, Jr., and N.M. Karayannis, Inorg. Chim. Acta, 123, 105 (1986).
- 74. P. deMeester, D.M.L. Goodgame A.C. Skapski and Z. Warnke, Biochim. Biophys. Acta, 324, 301 (1973).
- 75. M.J. McCall and M.R. Taylor, Acta Cryst., B32, 1687 (1976).